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Abstract Stking  from the breaking soliton equation, we obtain a new integrable equation 
in 2+ 1 dimensions. Though the equation has no exchange symmetry of the space variables x 
andy, the model reduces back to the known (1 + l)-dimensional sine-Gordon (or Liouville) 
equation. 

. .  The breaking soliton equation 

U,, = 4U+, + 2 U 9 n  - u m y  (1) 

was first established by Calogero and Degasperis 111. Equation (1) is used to describe 
the (2 + 1)-dimensional interaction of Riemann wave propagation along the y-axis with 
long wave propagation along the x-axis [2,3]. Set U =  U,, then (1) can be written as 

which reduces to the known KdV equation when we take x=y. The bi-Hamiltonian 
structure and the Lax pair equations with non-isospectral problem have been discussed 
in [3]. 

We know that starting from any one symmetry of an integrable model one can 
obtain a new integrable equation. For instance the well known sine-Gordon equation 

&,=sin 24 (3) 

can be obtained from the non-local symmetry of the Kdv (or mKdv) equation 141. A, 
symmetry c of the evolution equation (2) is defined as 

0,=~c-4~,c +400;+ 2~,a;’0,+2~,a;~~~- ax, (4) 

U + V f & G  ( E  infinitesimal). (5 )  

such that ( 2 )  is form invariant under the transformation 

By means of the recursion operator (2) 131. ,various solutions of (4) can be 
obtained. Here we only give a special non-local symmetry of (2) to obtain &e extended 
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sine-Gordon equation in 2+ 1 dimensions. The direct calculations tell us that 

(6)  1 -3 0 ~ = 2 w ~ ~ ( i + a ;  w v,)+w-'v,, 
with 

is a non-local symmetry of the breaking soliton equation (1). It is straightforward to 
verify that the compatibility condition yxx,= yta of (7) and (8) is just equation (1). 
Now using the symmetry a. we obtain a new integrable 2 11 dimensional equation: 

ut= ao=2y,yl(1 + a; 'w- '~ , , )  + y - ' ~ ,  (9) 
w x x =  VV or U = w x x / w .  (10) 

This equation is a (2+ 1)-dimensional extension of the negative (1 + 1)-dimensional Kdv 
equation 

v,=2wxy V,=W. (11) 
Equation (1 1) is related to the sine-Gordon equation (3) and/or the Liouville equation 
by the well known Miura transformation [4,5]. When yr,=O (uy=O) or x=y, equation 
( 9 )  is reduced to (11). In order to obtain the extended 211 dimensional sine-Gordon 
equation from (9) and (lo), we can substitute (10) into (9) 

Now multiplying (12) by I$ and integrating once with respect to x we have 

v~,v-  wxwt= f $a;' Y - ~ Y , ~ :  4 w4+ a;' w,,+ c (13) 
i.e., 

where C is an integral constant. Finally, setting 

y=expi+ 

we obtain 
(15) 

(16) 
with C= -4. It is clear that equation (16) is a 2 x 1 dimensional extension of the sine- 
Gordon equation (3). When x=y or bY=O, equation (15) reduces to the usual sine- 
Gordon equation. 

+ .=l  2 cos 2+a;'(sin~+),,- f sin2@;'(cos @),+sin Z+ 

Taking the integral constant C as zero and setting 

w=exp4 (17) 

+xt= 4 exp 2++e~p(-2+)a;'a,exp~+-expz+a;~a,exp(-2+). (18) 

for (14), the extended (2+ 1)-dimensional integrable Liouville equations are obtained: 

It is known that there exist different (Z+l)-dhensional extensions for the Kdv 
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equation. The Kadomtsev-Petviashvili equation [6] and the Veselov-Novikov equation 
[7l are two significant examples. In the Same way, there may be different (2+ 1)-dmen- 
sional extensions for the sineGordon equations. The study of other types of (2+ 1)- 
dimensional sine-Gordon extension are in progress. More information about the 
extended sine-Gordon equation (16), such as the soliton solutions, infinite many sym- 
metries, conservation laws and other integrable properties, are also worth further study. 
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